题目内容
【题目】如图,点E是正方形ABCD的边BC延长线上一点,连接DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交CD于G.
(1)求证:BG=DE;
(2)若点G为CD的中点,求的值;
(3)在(2)的条件下,求的值.
【答案】(1)(略);(2); (3).
【解析】试题分析:(1)由于BF⊥DE,所以∠GFD=90°,从而可知∠CBG=∠CDE,根据全等三角形的判定即可证明△BCG≌△DCE,从而可知BG=DE;
(2)由正方形的性质得到AB=DC,AB∥DC,进而得到AB=2GC,由AB∥DC得到△ABH∽△CGH,再由相似三角形的性质即可得到结论;
(3)设CG=1,从而知CG=CE=1,由勾股定理可知:DE=BG=,由易证△ABH∽△CGH,所以=2,从而可求出HG的长度,进而求出的值.
(1)∵BF⊥DE,∴∠GFD=90°,∵∠BCG=90°,∠BGC=∠DGF,∴∠CBG=∠CDE,在△BCG与△DCE中,∵∠CBG=∠CDE,BC=CD,∠BCG=∠DCE,∴△BCG≌△DCE(ASA),∴BG=DE;
(2)∵ABCD是正方形,∴AB=DC,AB∥DC,∵点G为CD的中点,∴DC=AB=2CG,∵AB∥DC,∴△ABH∽△CGH,∴AB:CG=BH:HG=2:1,∴ ;
(3)设CG=1,∵G为CD的中点,∴GD=CG=1,由(1)可知:△BCG≌△DCE(ASA),∴CG=CE=1,∴由勾股定理可知:DE=BG=,∵sin∠CDE=,∴GF=,∵AB∥CG,∴△ABH∽△CGH,∴,∴BH=,GH=,∴ =.
练习册系列答案
相关题目