题目内容
【题目】在平面直角坐标系中,已知点A、B的坐标分别为(-,0)、(0,-1),把点A绕坐标原点O顺时针旋转135°得点C,若点C在反比例函数y=的图象上.
(1)求反比例函数的表达式;
(2)若点D在y轴上,点E在反比例函数y=的图象上,且以点A、B、D、E为顶点的四边形是平行四边形.请画出满足题意的示意图并在示意图的下方直接写出相应的点D、E的坐标.
【答案】(1)y=;(2)示意图见解析,E(-,-),D(0,-1-)或E(-,-),D(0,-1+)或E , D
【解析】
(1)根据旋转和直角三角形的边角关系可以求出点C的坐标,进而确定反比例函数的关系式;
(2)分两种情况进行讨论解答,①点E在第三象限,由题意可得E的横坐标与点A的相同,将A的横坐标代入反比例函数的关系式,可求出纵坐标,得到E的坐标,进而得到AE的长,也是BD的长,因此D在B的上方和下方,即可求出点D的坐标,②点E在第一象限,由三角形全等,得到E的横坐标,代入求出纵坐标,确定E的坐标,进而求出点D的坐标.
(1)由旋转得:OC=OA=,∠AOC=135°,
过点C作CM⊥y轴,垂足为M,则∠COM=135°-90°=45°,
在Rt△OMC中,∠COM=45°,OC=,
∴OM=CM=1,
∴点C(1,1),代入y=得:k=1,
∴反比例函数的关系式为:y=,
答:反比例函数的关系式为:y=
(2)①当点E在第三象限反比例函数的图象上,如图1,图2,
∵点D在y轴上,AEDB是平行四边形,
∴AE∥DB,AE=BD,AE⊥OA,
当x=-时,y==-,
∴E(-,-)
∵B(0,-1),BD=AE=,
当点D在B的下方时,
∴D(0,-1-)
当点D在B的上方时,
∴D(0,-1+),
②当点E在第一象限反比例函数的图象上时,如图3,
过点E作EN⊥y轴,垂足为N,
∵ABED是平行四边形,
∴AB=DE,AB=DE,
∴∠ABO=∠EDO,
∴△AOB≌△END (AAS),
∴EN=OA=,DN=OB=1,
当x=时,代入y=得:y=,
∴E(,),
∴ON=,OD=ON+DN=1+,
∴D(0,1+)
【题目】甲、乙两台机床同时加工直径为的同种规格零件,为了检查两台机床加工零件的稳定性,质检员从两台机床的产品中各抽取件进行检测,结果如下(单位:):
甲 | |||||
乙 |
(1)分别求出这两台机床所加工零件直径的平均数和方差;
(2)根据所学的统计知识,你认为哪一台机床生产零件的稳定性更好一些,说明理由.