搜索
题目内容
在△ABC中,若AB=AC,中线AD=
3
,cosB=
3
2
,则△ABC的周长为( )
A.
4+6
3
B.
6+4
3
C.
6+6
3
D.以上都不对
试题答案
相关练习册答案
分析:
根据等腰三角形的性质得出AD⊥BC,进而得出∠B=30°,再利用锐角三角函数关系求出BD的长,进而得出BC的长,即可得出答案.
解答:
解:∵AB=AC,中线AD=
3
,
∴AD⊥BC,
∵cosB=
3
2
,
∴∠B=30°,
∴AB=2AD=2
3
,
∴BD=2
3
×cos30°=3,
∴BC=3×2=6,AB=AC=2
3
,
∴△ABC的周长为:6+2
3
+2
3
=6+4
3
.
故选:B.
点评:
此题主要考查了解直角三角形和等腰三角形的性质等知识,根据已知得出AB的长是解题关键.
练习册系列答案
黄冈口算题卡系列答案
一通百通小学毕业升学模拟测试卷系列答案
真题集训小学期末全程测试卷系列答案
100分闯关考前冲刺全真模拟系列答案
启航学期总动员系列答案
全国历届中考真题分类一卷通系列答案
考卷王单元检测评估卷系列答案
心算口算巧算一课一练系列答案
典元教辅小学毕业升学必备小升初押题卷系列答案
金榜夺冠真题卷系列答案
相关题目
在△ABC中,若AB=30,AC=26,BC上的高为24,则此三角形的周长为
.
9、如图,在△ABC中,若AB=10,AC=16,AC边上的中线BD=6,则BC等于( )
A、8
B、10
C、11
D、12
如图,△ABC中,点D是BC中点,连接AD并延长到点E,连接BE.
(1)若要使△ACD≌△EBD,应添上条件:
AC∥BE
AC∥BE
;
(2)证明上题;
(3)在△ABC中,若AB=5,AC=3,可以求得BC边上的中线AD的取值范围是AD<4.请看解题过程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而
AD=
1
2
AE
,则AD<4.请参考上述解题方法,求AD>
1
1
.
如图,△ABC中,点D是BC中点,连接AD并延长到点E,连接BE.
(1)若要使△ACD≌△EBD,应添上条件:
AD=DE
AD=DE
;
(2)证明:
(3)在△ABC中,若AB=5,AC=3,可以求得BC边上的中线AD的取值范围是AD<4.请看解题过程:由△ACD≌△EBD得:AD=ED,BE=AC=3,因此AE<AB+BE,即AE<8,而
AD=
1
2
AE
,则AD<4.请参考上述解题方法,求出AD>
1
1
.所以AD的取值范围是
1<AD<4
1<AD<4
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总