题目内容
如图.用长为18cm的篱笆(虚线部分),两面靠墙围成矩形的苗圃,设矩形的一边长为x(m),面y(m2),当x=______时,所围苗圃面积最大.
设苗圃的一边长为xm,则矩形的另一边长为(18-x)m,
则y=x(18-x)=-x2+18x
∵y=-x2+18x=-(x-9)2+81
∴当x=9时,苗圃的面积最大,最大面积是81m2.
故答案为:9.
则y=x(18-x)=-x2+18x
∵y=-x2+18x=-(x-9)2+81
∴当x=9时,苗圃的面积最大,最大面积是81m2.
故答案为:9.
练习册系列答案
相关题目