题目内容
【题目】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.
(1)求证:CF=EB;
(2)请你判断AE、AF与BE之间的数量关系,并说明理由.
【答案】(1)见详解;(2) AF+BE=AE
【解析】
(1)根据角平分线的性质得到DC=DE,根据直角三角形全等的判定定理得到Rt△DCF≌Rt△DEB,根据全等三角形的性质定理得到答案;
(2)根据全等三角形的性质定理得到AC=AE,根据(1)的结论得到答案.
证明:(1)∵AD平分∠BAC,DE⊥AB,∠C=90,
∴DC=DE,
在Rt△DCF和Rt△DEB中,
DC=DE,DF=DB,
∴Rt△DCF≌Rt△DEB,
∴CF=EB;
(2)AF+BE=AE.
∵Rt△DCF≌Rt△DEB,
∴AC=AE,
∴AF+FC=AE,
即AF+BE=AE.
练习册系列答案
相关题目