题目内容
【题目】如图,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中点,AD=DC=2,下面结论:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正确的个数是( )
A. 1B. 2C. 3D. 4
【答案】D
【解析】
根据条件AD∥BC,AE∥CD可以得出四边形AECD是平行四边形,由AD=CD可以得出四边形AECD是菱形,就有AE=EC=CD=AD=2,就有∠2=∠3,有∠1=∠2,∠ABC=90°,可以得出∠1=∠2=∠3=30°,有∠BAC=60°,可以得出AC=2AB,有O是AC的中点,就有BO=AO=CO=AC.就有△ABO为等边三角形,∠1=∠2就有AE⊥BO,由∠1=30°,∠ABE=90°,就有BE=AE=1,由勾股定理就可以求出AB的值,从而得出结论.
∵AD∥BC,AE∥CD,
∴四边形AECD是平行四边形.
∵AD=DC,
∴四边形AECD是菱形,
∴AE=EC=CD=AD=2,
∴∠2=∠3.
∵∠1=∠2,
∴∠1=∠2=∠3.
∵∠ABC=90°,
∴∠1+∠2+∠3=90°,
∴∠1=∠2=∠3=30°,
∴BE=AE,AC=2AB.本答案正确;
∴BE=1,
在Rt△ABE中,由勾股定理,得
AB=.本答案正确;
∵O是AC的中点,∠ABC=90°,
∴BO=AO=CO=AC.
∵∠1=∠2=∠3=30°,
∴∠BAO=60°,
∴△ABO为等边三角形.
∵∠1=∠2,
∴AE⊥BO.本答案正确;
∵S△ADC=S△AEC=,
∵CE=2,BE=1,
∴CE=2BE,
∴S△ACE=,
∴S△ACE=2S△ABE,
∴S△ADC=2S△ABE.本答案正确.
∴正确的个数有4个.
故选D.
练习册系列答案
相关题目