题目内容
如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的边长BC的长是( )
A. 2 B. 4 C. 2 D. 4
下列运算正确的是( )
A. x2+x3=x5 B. x8÷x2=x4 C. 3x-2x=1 D. (x2)3=x6
把多项式分解因式的结果是___________.
已知a、b、c是△ABC的三边,且满足a4+b2c2=b4+a2c2,试判断△ABC的形状.
阅读下面解题过程:
【解析】由a4+b2c2=b4+a2c2得:a4﹣b4=a2c2﹣b2c2①
(a2+b2)(a2﹣b2)=c2(a2﹣b2) ②
即 a2+b2=c2③
∴△ABC 为RT△.④
试问:以上解题过程是否正确:_____.
若不正确,请指出错在哪一步?_____(填代号)
错误原因是_____.
本题的结论应为_____.
如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为( )
A. 2 B. 2-1 C. 2.5 D. 2.3
如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.
(1)求证:CE=AD;
(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
计算:3tan30°+|2﹣|+﹣(3﹣π)0
在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y轴,则称该菱形为边的“坐标菱形”.
(1)已知点A(2,0),B(0,2),则以AB为边的“坐标菱形”的最小内角为 ;
(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD 表达式;
(3)⊙O的半径为,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.
如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至的位置,此时点的横坐标为3,则点的坐标为
A. (4,) B. (3,) C. (4,) D. (3,)