题目内容
【题目】把一根木条固定在墙上,至少要钉____根钉子,根据是__________
【答案】2,两点确定一条直线
【解析】
【题目】用一个平面去截下列几何体,截面可能是圆的是__________.(填写序号)
①三棱柱;②圆柱;③圆锥;④长方体;⑤球
【题目】如图1,一次函数y=﹣x+b与反比例函数(k≠0)的图象交于点A(1,3),B(m,1),与x轴交于点D,直线OA与反比例函数(k≠0)的图象的另一支交于点C,过点B作直线l垂直于x轴,点E是点D关于直线l的对称点.
(1)k= ;
(2)判断点B、E、C是否在同一条直线上,并说明理由;
(3)如图2,已知点F在x轴正半轴上,OF=,点P是反比例函数(k≠0)的图象位于第一象限部分上的点(点P在点A的上方),∠ABP=∠EBF,则点P的坐标为( , ).
【题目】写出一个系数为负数,含有x、y的五次单项式,如_____.
【题目】如图,AB为⊙O直径,AC为⊙O的弦,过⊙O外的点D作DE⊥OA于点E,交AC于点F,连接DC并延长交AB的延长线于点P,且∠D=2∠A,作CH⊥AB于点H.
(1)判断直线DC与⊙O的位置关系,并说明理由;
(2)若HB=2,cosD=,请求出AC的长.
【题目】已知a,b互为相反数,c,d互为倒数,e的绝对值为3,试求(a+b)÷108-e2÷[(-cd)2019-2]的值.
【题目】如图,抛物线交y轴于点A,并经过B(4,4)和C(6,0)两点,点D的坐标为(4,0),连接AD,BC,点E从点A出发,以每秒个单位长度的速度沿线段AD向点D运动,到达点D后,以每秒1个单位长度的速度沿射线DC运动,设点E的运动时间为t秒,过点E作AB的垂线EF交直线AB于点F,以线段EF为斜边向右作等腰直角△EFG.
(1)求抛物线的解析式;
(2)当点G落在第一象限内的抛物线上时,求出t的值;
(3)设点E从点A出发时,点E,F,G都与点A重合,点E在运动过程中,当△BCG的面积为4时,直接写出相应的t值,并直接写出点G从出发到此时所经过的路径长.
【题目】一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为 元.
【题目】如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.
(1)求∠AFE的度数;
(3)求阴影部分的面积(结果保留π和根号).