题目内容
【题目】如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2、B2、C2、D2,顺次连接得到四边形A2B2C2D2,…,依此类推,这样得到四边形AnBnCnDn,则四边形AnBnCnDn的面积为( )
A. B. C. D. 不确定
【答案】B
【解析】根据三角形的面积公式,可以求得四边形ABCD的面积是16;根据三角形的中位线定理,得A1B1∥AC,A1B1=AC,则△BA1B1∽△BAC,得△BA1B1和△BAC的面积比是相似比的平方,即,因此四边形A1B1C1D1的面积是四边形ABCD的面积的,依此类推可得四边形AnBnCnDn的面积.
解:∵四边形A1B1C1D1的四个顶点A1、B1、C1、D1分别为AB、BC、CD、DA的中点,
∴A1B1∥AC,A1B1=AC,
∴△BA1B1∽△BAC,
∴△BA1B1和△BAC的面积比是相似比的平方,即,
又∵四边形ABCD的对角线AC=8,BD=4,AC⊥BD,
∴四边形ABCD的面积是16,
∴SA1B1C1D1=×16,
∴四边形AnBnCnDn的面积=16×=.
【题目】某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:
班级 | 1班 | 2班 | 3班 | 4班 |
实际购买量(本) | a | 33 | c | 21 |
实际购买量与计划购数量的差值(本) | +12 | b | -8 | -9 |
(1) 直接写出a=__________,b=__________,c=__________
(2) 根据记录的数据可知4个班实际购书共_________本
(3) 书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书售价为30元,请计算这4个班整体购书的最低总花费是多少元?
【题目】已知是由经过平移得到的,其中A,B,C三点的对应点分别是,,,它们在平面直角坐标系中的坐标如下表所示:
(1)观察表中各对应点坐标的变化,并填空:__________,__________.
(2)在下图的平面直角坐标系中画出和.
(3)写出是怎样平移得到的?