题目内容
【题目】如图,在矩形纸片ABCD中,AB=5,AD=2,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,则四边形EPFD为菱形时,x的取值范围是 .
【答案】2≤x≤5
【解析】解:∵要使四边形EPFD为菱形,则需DE=EP=FP=DF, ∴如图1:当点E与点A重合时,AP=AD=2,此时AP最小;
如图2:当点P与B重合时,AP=AB=5,此时AP最大;
∴四边形EPFD为菱形的x的取值范围是:2≤x≤5.
所以答案是:2≤x≤5.
【考点精析】解答此题的关键在于理解翻折变换(折叠问题)的相关知识,掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
【题目】为建设生态平顶山,某校学生在植树节那天,组织九年级八个班的学生到山顶公园植树,各班植树情况如下表:下列说法错误的是( )
班 级 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 |
棵 数 | 15 | 18 | 22 | 25 | 29 | 14 | 18 | 19 |
A.这组数据的众数是18
B.这组数据的平均数是20
C.这组数据的中位数是18.5
D.这组数据的方差为0
【题目】某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.