题目内容
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x1<1,有下列结论:①c>0;②﹣3<x2<﹣2;③a+b+c<0;④b2﹣4ac>0;⑤已知图象上点A(4,y1),B(1,y2),则y1>y2.其中,正确结论的个数有( )
A.5B.4C.3D.2
【答案】C
【解析】
由图象可知当x=0时,y<0,所以c<0;函数与x轴有两个交点,所以△>0,即b2﹣4ac>0;当x=1时,y>0,所以a+b+c>0;由函数的对称性可知,对称轴为x=﹣1,0<x1<1,则另一个交点为﹣3<x2<﹣2;由函数在对称轴的右侧y随x值的增大而增大,可求y1>y2.
解:由图象可知,当x=0时,y<0,
∴c<0,
∴①不正确;
∵对称轴为x=﹣1,0<x1<1,
∴﹣3<x2<﹣2,
∴②正确;
当x=1时,y>0,
∴a+b+c>0,
∴③不正确;
∵函数与x轴有两个交点,
∴△>0,即b2﹣4ac>0,
∴④正确;
由点A(4,y1),B(1,y2)可知,点A、B在对称轴的右侧,
∴y随x值的增大而增大,
∴y1>y2,
故⑤正确;
正确的有3个,
故选:C.
练习册系列答案
相关题目