搜索
题目内容
已知x=-1是关于x的方程
的一个根,则a=
.
试题答案
相关练习册答案
﹣2或1
试题分析:方程的解就是能使方程左右两边相等的未知数的值,把x=﹣1代入方程,即可得到一个关于a的方程:
,解得a=﹣2或1。
练习册系列答案
世纪金榜金榜大讲堂系列答案
经纶学典中考档案系列答案
优倍伴学总复习系列答案
中考对策全程复习方案系列答案
王朝霞中考真题精编系列答案
阅读旗舰文言文课内阅读系列答案
中考一线题系列答案
中考真题超详解系列答案
中考必刷题系列答案
新课程新练习系列答案
相关题目
如图,在一块长为22m、宽为17m的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形一边平行),剩余部分种上草坪,使草坪面积为300m
2
.若设道路宽为
m,则根据题意可列方程为
__
.
已知实数a,b分别满足a
2
﹣6a+4=0,b
2
﹣6b+4=0,则
的值是________.
方程
的解是
.
若
,且一元二次方程
有实数根,则
的取值范围
是 .
在前面的学习中,我们通过对同一面积的不同表达和比较,根据图①和图②发现并验证了平方差公式和完全平方公式
这种利用面积关系解决问题的方法,使抽象的数量关系因集合直观而形象化。
【研究速算】
提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?
几何建模:
用矩形的面积表示两个正数的乘积,以47×43为例:
(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面。
(2)分析:原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果。
归纳提炼:
两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述)
.
【研究方程】
提出问题:怎么图解一元二次方程
几何建模:
(1)变形:
(2)画四个长为
,宽为
的矩形,构造图④
(3)分析:图中的大正方形面积可以有两种不同的表达方式,
或四个长
,宽
的矩形之和,加上中间边长为2的小正方形面积
即:
∵
∴
∴
∵
∴
归纳提炼:求关于
的一元二次方程
的解
要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)
【研究不等关系】
提出问题:怎么运用矩形面积表示
与
的大小关系(其中
)?
几何建模:
(1)画长
,宽
的矩形,按图⑤方式分割
(2)变形:
(3)分析:图⑤中大矩形的面积可以表示为
;阴影部分面积可以表示为
,
画点部分的面积可表示为
,由图形的部分与整体的关系可知:
>
,即
>
归纳提炼:
当
,
时,表示
与
的大小关系
根据题意,设
,
,要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)
若关于x的方程式x
2
﹣x+a=0有实根,则a的值可以是
A.2
B.1
C.0.5
D.0.25
如图,根据所示程序计算,若输入x=
,则输出结果为
.
一元二次方程
的根是
A.﹣1
B.2
C.1和2
D.﹣1和2
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总