题目内容

【题目】已知:如图A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OCBC,∠B30°

1)求证:AB是⊙O的切线;

2)若∠ACD45°OC2,求弦CD的长.

【答案】1)见解析; 2

【解析】

1)求证:AB是⊙O的切线,可以转化为证∠OAB90°的问题来解决.

2)作AECD于点ECDDE+CE,因而就可以转化为求DECE的问题,根据勾股定理就可以得到.

1)证明:如图,连接OA

OCBCOAOC

OAOB

∴∠OAB90°,即OAAB

AB是⊙O的切线;

2)解:作AECD于点E

∵∠O60°

∴∠D30°

∵∠ACD45°ACOC2

∴在RtACE中,CEAE

∵∠D30°

AD2

DEAE

CDDE+CE+

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网