题目内容
【题目】已知抛物线y=a(x﹣3)2+过点C(0,4),顶点为M,与x轴交于A、B两点.如图所示以AB为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x=3;②点C在⊙D外;③在抛物线上存在一点E,能使四边形ADEC为平行四边形;④直线CM与⊙D相切.正确的结论是( )
A.①③B.①④C.①③④D.①②③④
【答案】B
【解析】
①根据抛物线的解析式即可判定;
②求得AD、CD的长进行比较即可判定,
③过点C作CE∥AB,交抛物线于E,如果CE=AD,则根据一组等边平行且相等的四边形是平行四边形即可判定;
④求得直线CM、直线CD的解析式通过它们的斜率进行判定;
由抛物线y=a(x﹣3)2+可知:抛物线的对称轴x=3,故①正确;
∵抛物线y=a(x﹣3)2+过点C(0,4),
∴4=9a+,解得:a=﹣,
∴抛物线的解析式为y=﹣(x﹣3)2+,
令y=0,则﹣(x﹣3)2+=0,解得:x=8或x=﹣2,
∴A(﹣2,0),B(8,0);
∴AB=10,
∴AD=5,
∴OD=3
∵C(0,4),
∴CD=,
∴CD=AD,
∴点C在圆上,故②错误;
过点C作CE∥AB,交抛物线于E,
∵C(0,4),
代入y=﹣(x﹣3)2+得:4=﹣(x﹣3)2+,
解得:x=0,或x=6,
∴CE=6,
∴AD≠CE,
∴四边形ADEC不是平行四边形,故③错误;
由抛物线y=a(x﹣3)2+可知:M(3,),
∵C(0,4),
∴直线CM为y=x+4,直线CD为:y=x+4,
∴CM⊥CD,
∵CD=AD=5,
∴直线CM与⊙D相切,故④正确;
故选:B.
练习册系列答案
相关题目