题目内容
【题目】甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:
(1)a=40,m=1;
(2)乙的速度是80km/h;
(3)甲比乙迟h到达B地;
(4)乙车行驶小时或小时,两车恰好相距50km.
正确的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】(1)由题意,得m=1.5﹣0.5=1.
120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;
(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;
(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得
解得:
∴y=40x﹣20,
根据图形得知:甲、乙两车中先到达B地的是乙车,
把y=260代入y=40x﹣20得,x=7,
∵乙车的行驶速度:80km/h,
∴乙车的行驶260km需要260÷80=3.25h,
∴7﹣(2+3.25)=h,
∴甲比乙迟h到达B地,故(3)正确;
(4)当1.5<x≤7时,y=40x﹣20.
设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得
解得:
∴y=80x﹣160.
当40x﹣20﹣50=80x﹣160时,
解得:x=.
当40x﹣20+50=80x﹣160时,
解得:x=.
∴﹣2=, ﹣2=.
所以乙车行驶小时或小时,两车恰好相距50km,故(4)错误.
故选C.
【题目】某商场计划购进,两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:
类型 | 价格 | 进价(元/盏) | 售价(元/盏) |
型 | 30 | 45 | |
型 | 50 | 70 |
(1)若设商场购进型台灯盏,销售完这批台灯所获利润为,写出与之间的函数关系式;
(2)若商场规定型灯的进货数量不超过型灯数量的4倍,那么型和型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.