题目内容
10、如图所示,在长方形ABCD的对称轴l上找点P,使得△PAB、△PBC均为等腰三角形,则满足条件的点P有( )
分析:利用分类讨论的思想,此题共可找到5个符合条件的点:一是作AB或DC的垂直平分线交l于P;二是在长方形内部
在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB;三是如图,在长方形外l上作点P,使AB=BP,DC=PC,同理,在长方形外l上作点P,使AP=AB,PD=DC.
在l上作点P,使PA=AB,PD=DC,同理,在l上作点P,使PC=DC,AB=PB;三是如图,在长方形外l上作点P,使AB=BP,DC=PC,同理,在长方形外l上作点P,使AP=AB,PD=DC.
解答:解:如图,作AB或DC的垂直平分线交l于P,
如图,在l上作点P,使PA=AB,PD=DC,
同理,在l上作点P,使PC=DC,AB=PB,
如图,在长方形外l上作点P,使AB=BP,DC=PC,
同理,在长方形外l上作点P,使AP=AB,PD=DC,
故答案为5.
如图,在l上作点P,使PA=AB,PD=DC,
同理,在l上作点P,使PC=DC,AB=PB,
如图,在长方形外l上作点P,使AB=BP,DC=PC,
同理,在长方形外l上作点P,使AP=AB,PD=DC,
故答案为5.
点评:本题考查了等腰三角形的判定;解题中利用等腰三角形的判定来解决特殊的实际问题,其关键是根据题意,结合图形,再利用数学知识来求解.
练习册系列答案
相关题目
如图所示,在长方形ABCD中,E、F分别是AB、BC上的点,且BE=12,BF=16,则由点E到F的最短距离为( )
A、20 | B、24 | C、28 | D、32 |