题目内容

【题目】如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E.

(1)求证:∠1=∠BAD;
(2)求证:BE是⊙O的切线.

【答案】
(1)

证明:∵BD=BA,

∴∠BDA=∠BAD,

∵∠1=∠BDA,

∴∠1=∠BAD;


(2)

证明:连接BO,

∵∠ABC=90°,

又∵∠BAD+∠BCD=180°,

∴∠BCO+∠BCD=180°,

∵OB=OC,

∴∠BCO=∠CBO,

∴∠CBO+∠BCD=180°,

∴OB∥DE,

∵BE⊥DE,

∴EB⊥OB,

∵OB是⊙O的半径,

∴BE是⊙O的切线.


【解析】(1)根据等腰三角形的性质和圆周角定理得出即可;(2)连接BO,求出OB∥DE,推出EB⊥OB,根据切线的判定得出即可;本题考查了三角形的外接圆与外心,等腰三角形的性质,切线的判定,熟练掌握切线的判定定理是解题的关键.
【考点精析】本题主要考查了圆周角定理和三角形的外接圆与外心的相关知识点,需要掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网