题目内容
【题目】如图,过平行四边形ABCD对角线交点O的线段EF,分别交AD,BC于点E,F,当AE=ED时,△AOE的面积为4,则四边形EFCD的面积是( )
A.8B.12C.16D.32
【答案】C
【解析】
根据等底等高的三角形面积相等可得S△DOE=S△AOE=4,进而可得S△COD=S△AOD=8,再由平行四边形性质可证明△COF≌△AOE(ASA),S△COF=S△AOE=4,即可得S四边形EFCD=16.
解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,AO=CO,OB=OD
∴∠DAC=∠ACB,
∵∠AOE=∠COF
∴△COF≌△AOE(ASA)
∵S△AOE=4,AE=ED
∴S△COF=S△DOE=S△AOE=4,
∴S△AOD=8
∵AO=CO
∴S△COD=S△AOD=8
∴S四边形EFCD=S△DOE+S△COD+S△COF=4+8+4=16;
故选:C.
练习册系列答案
相关题目