题目内容
【题目】已知,如图A、B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为90.
(1)请写出与AB两点距离相等的M点对应的数;
(2)现在有一只电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道对应的数是多少吗?
(3)若当电子蚂蚁P从B点出发时,以5个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向左运动,经过多长的时间两只电子蚂蚁在数轴上相距30个单位长度?
【答案】
(1)解:M点对应的数是(﹣10+90)÷2=40
(2)解:∵A、B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为90,
∴AB=90+10=100,
设t秒后P、Q相遇,
∴5t+3t=100,解得t=12.5;
∴此时C点表示的数为90﹣5×12.5=27.5.
答:C点对应的数是27.5
(3)解:相遇前:(100﹣30)÷(5﹣3)=35(秒),
相遇后:(30+100)÷(5﹣3)=65(秒).
则经过35秒或65秒长的时间两只电子蚂蚁在数轴上相距30个单位长度
【解析】(1)求﹣10与90和的一半即是M;(2)先求出AB的长,再设t秒后P、Q相遇即可得出关于t的一元一次方程,求出t的值,可求出P、Q相遇时点Q移动的距离,进而可得出C点对应的数;(3)分为2只电子蚂蚁相遇前相距35个单位长度和相遇后相距30个单位长度,相遇前:(100﹣30)÷(5﹣3)=35(秒),相遇后:(30+100)÷(5﹣3)=65(秒).
【考点精析】本题主要考查了数轴的相关知识点,需要掌握数轴是规定了原点、正方向、单位长度的一条直线才能正确解答此题.
练习册系列答案
相关题目