题目内容
【题目】如图,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1:,则大楼AB的高度为________米.(精确到0.1米,参考数据:,,)
【答案】6+29
【解析】
延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=x米,在Rt△BCH中,BC=12米,由勾股定理得出方程,解方程求出BH=6米,CH=6米,得出BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG=6+20(米),即可得出大楼AB的高度.
延长AB交DC于H,作EG⊥AB于G,如图所示:
则GH=DE=15米,EG=DH,
∵梯坎坡度i=1:,
∴BH:CH=1:,
设BH=x米,则CH=x米,
在Rt△BCH中,BC=12米,
由勾股定理得:x2+(x)2=122,
解得:x=6,
∴BH=6米,CH=6米,
∴BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=6+20(米),
∵∠α=45°,
∴∠EAG=90°﹣45°=45°,
∴△AEG是等腰直角三角形,
∴AG=EG=6+20(米),
∴AB=AG+BG=6+20+9=(6+29)m.
故答案为:6+29.
【题目】为了抗击新冠病毒疫情,全国人民众志成城,守望相助.春节后某地一水果购销商安排15辆汽车装运A,B,C三种水果120吨销售,所得利润全部捐赠湖北抗疫.已知按计划15辆汽车都要装满且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆,汽车对不同水果的运载量和每吨水果销售获利情况如下表.
水果品种 | A | B | C |
汽车运载量(吨/辆) | 10 | 8 | 6 |
水果获利(元/吨) | 800 | 1200 | 1000 |
(1)设装运A种水果的车辆数为x辆,装运B种水果车辆数为y辆,根据上表提供的信
息,
①求y与x之间的函数关系式;
②设计车辆的安排方案,并写出每种安排方案;
(2)若原有获利不变的情况下,当地政府按每吨50元的标准实行运费补贴,该经销商打算将获利连同补贴全部捐出.问应采用哪种车辆安排方案,可以使这次捐款数w(元)最大化?捐款w(元)最大是多少?