题目内容
【题目】对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①a+c=0,方程ax2+bx+c=0,有两个不相等的实数;②若方程ax2+bx+c=0有两个不相等的实根.则方程cx2+bx+a=0也一定有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2-4ac=(2am+b)2成立,其中正确的结论是_____.(把你认为正确结论的序号都填上)
【答案】①④
【解析】
①根据根的判别式即可作出判断;
②方程有两个不相等的实数根,则,当c=0时,cx2+bx+a=0为一元一次方程;
③若c是ax2+bx+c=0的一个根,则代入即可作出判断;
④若m是方程ax2+bx+c=0的一个根,则方程有实根,判别式,结合m是方程的根,代入一定成立,即可作出判断.
①根据公式法解一元二次方程可知,若a+c=0,且a≠0,∴a,c异号,∴,故此时有两个不相等的实数根,故选项①正确;
②若c=0,b≠0,则,∴方程ax2+bx+c=0有两个不相等的实数根,方程cx2+bx+a=0仅有一个解,故选项②错误;
③将x=c代入方程ax2+bx+c=0,可得,即,解得c=0或ac+b+1=0,因此ac+b+c=0不一定成立,故选项③错误;
④∵m是方程ax2+bx+c=0的一个根,∴am2+bm+c=0,此时
,故选项④正确
故答案为:①④.
【题目】某商店销售一种商品,通过记录,发现该商品从开始销售至销售的第x天结束时(x为整数)的总销量y(件)满足二次函数关系,销量情况记录如下表:
x | 0 | 1 | 2 | 3 |
y | 0 | 58 | 112 | 162 |
(1)求y与x之间的函数关系式(不需要写自变量的取值范围);
(2)求:销售到第几天结束时,该商品全部售完?
(3)若第m天的销量为22件,求m的值.