题目内容

【题目】如图,点C为△ABD的外接圆上的一动点(点C不在 上,且不与点B,D重合),∠ACB=∠ABD=45°
(1)求证:BD是该外接圆的直径;
(2)连结CD,求证: AC=BC+CD;
(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2 , AM2 , BM2三者之间满足的等量关系,并证明你的结论.

【答案】
(1)解:∵ =

∴∠ACB=∠ADB=45°,

∵∠ABD=45°,

∴∠BAD=90°,

∴BD是△ABD外接圆的直径;


(2)在CD的延长线上截取DE=BC,

连接EA,

∵∠ABD=∠ADB,

∴AB=AD,

∵∠ADE+∠ADC=180°,

∠ABC+∠ADC=180°,

∴∠ABC=∠ADE,

在△ABC与△ADE中,

∴△ABC≌△ADE(SAS),

∴∠BAC=∠DAE,

∴∠BAC+∠CAD=∠DAE+∠CAD,

∴∠BAD=∠CAE=90°,

=

∴∠ACD=∠ABD=45°,

∴△CAE是等腰直角三角形,

AC=CE,

AC=CD+DE=CD+BC;


(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,连接BF,

由对称性可知:∠AMB=∠ACB=45°,

∴∠FMA=45°,

∴△AMF是等腰直角三角形,

∴AM=AF,MF= AM,

∵∠MAF+∠MAB=∠BAD+∠MAB,

∴∠FAB=∠MAD,

在△ABF与△ADM中,

∴△ABF≌△ADM(SAS),

∴BF=DM,

在Rt△BMF中,

∵BM2+MF2=BF2

∴BM2+2AM2=DM2


【解析】(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°;(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角形即可得出结论;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,证明△AMF是等腰三角形后,可得出AM=AF,MF= AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2 , AM2 , BM2三者之间的数量关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网