题目内容
【题目】如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.
(1)求证:△AOE≌△COF;
(2)当α=30°时,求线段EF的长度.
【答案】(1)见解析;(2)
【解析】
(1)根据菱形得到AO=CO AD∥BC,根据平行线的性质得到∠OAE=∠OCF,结合对顶角得到三角形全等;
(2)根据菱形得出AB=BC=2,∠ABC=60°得到△ABC为等边三角形,根据题意得出OC=1,根据∠α=30°得出OF⊥BC,根据Rt△OFC得出OF的长度,根据全等得出EF=2OF得出答案.
(1)∵ABCD为菱形
∴AO=CO AD∥BC
∴∠OAE=∠OCF
又∵∠AOE=∠COF
∴△AOE≌△COF
(2)∵AB=BC=2,∠ABC=60°
∴△ABC为等边三角形
∵AC=2,∠ACB=60°
∴OC=1
当∠α=30°
∴OF⊥BC
在Rt△OFC中 ∠COF=30°
∴OF=OC=
又由(1)可得:OE=OF ∴EF=2OF=.
练习册系列答案
相关题目