题目内容
【题目】如图所示是一个长为2m,宽为的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形
如图中的阴影部分的正方形的边长等于______用含m、n的代数式表示;
请用两种不同的方法列代数式表示图中阴影部分的面积:
方法:______;
方法:______;
观察图,试写出、、mn这三个代数式之间的等量关系:______;
根据题中的等量关系,若,,求图中阴影部分的面积.
【答案】(1)(2)①②(3)(4)44
【解析】
由图可知,分成的四个小长方形每个长为m,宽为n,因此图中阴影部分边长为小长方形的长减去宽,即;
直接用阴影正方形边长的平方求面积;用大正方形面积减四个小长方形的面积;
根据阴影部分面积为等量关系列等式;
直接代入计算.
小长方形每个长为m,宽为n,
中阴影部分正方形边长为小长方形的长减去宽,即
故答案为:
阴影正方形边长为
面积为:
故答案为:
大正方形边长为
大正方形面积为:
四个小长方形面积为4mn
阴影正方形面积大正方形面积小长方形面积,为:
故答案为:
根据阴影正方形面积可得:
故答案为:
且, ,
【题目】温州某企业安排65名工人生产甲、乙两种产品,每人每天生产2件甲或1件乙,甲产品每件可获利15元.根据市场需求和生产经验,乙产品每天产量不少于5件,当每天生产5件时,每件可获利120元,每增加1件,当天平均每件获利减少2元.设每天安排x人生产乙产品.
(1)根据信息填表
产品种类 | 每天工人数(人) | 每天产量(件) | 每件产品可获利润(元) |
甲 | 15 | ||
乙 |
(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多550元,求每件乙产品可获得的利润.
(3)该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产1件丙(每人每天只能生产一件产品),丙产品每件可获利30元,求每天生产三种产品可获得的总利润W(元)的最大值及相应的x值.