题目内容
【题目】如图,△ABC中,∠C=90°,BC=6cm,AC=8cm,点P从点A开始沿AC向点C以2厘米/秒的速度运动;与此同时,点Q从点C开始沿CB边向点B以1厘米/秒的速度运动;如果P、Q分别从A、C同时出发,当其中一点到达终点时,另一点也随之停止运动.
(1)经过几秒,△CPQ的面积等于3cm2?
(2)在整个运动过程中,是否存在某一时刻t,使PQ恰好平分△ABC的面积?若存在,求出运动时间t;若不存在,请说明理由.
(3)是否存在某一时刻,PQ长为,如果存在,求出运动时间t。
【答案】(1)1或3秒;(2)不存在满足条件的t;(3)
【解析】
(1)设出运动所求的时间,可将BP和BQ的长表示出来,代入三角形面积公式,列出等式,可将时间求出;
(2)将△PBQ的面积表示出来,根据△=b2-4ac来判断;
(3)设经过y秒后存在,则PC=8-2y,CQ=y,根据勾股定理可得PC2+CQ2=()2,求方程即可.
(1)解:设经过x秒,△CPQ的面积等于3cm2.则
x(8﹣2x)=3,
化简得x2﹣4x+3=0,
解得x1=1,x2=3;
(2)设存在某一时刻t,使PQ恰好平分△ABC的面积.则
t(8﹣2t)=××6×8,
化简得t2﹣4t+12=0,
b2﹣4ac=16﹣48=﹣32<0,
故方程无实数根,即不存在满足条件的t.
(3)设经过y秒后存在PQ长为,则PC=8-2y,CQ=y,
∵∠C=90°,
∴PC2+CQ2=()2,
解得:y1=,y2=5(不符合题意,舍去),
所以经过秒后,PQ的长为.
【题目】吴京同学根据学习函数的经验,对一个新函数y=的图象和性质进行了如下探究,请帮他把探究过程补充完整
(1)该函数的自变量x的取值范围是 .
(2)列表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | … |
y | … |
| m | ﹣1 |
| ﹣5 | n | ﹣1 | … |
表中m= ,n= .
(3)描点、连线
在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:
(4)观察所画出的函数图象,写出该函数的两条性质:
① ;
② .