题目内容

如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).

(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.

(1)
(2)﹣1<x<0或x>1。
(3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC。

解析分析:(1)设反比例函数的解析式为(k>0),然后根据条件求出A点坐标,再求出k的值,进而求出反比例函数的解析式。
(2)直接由图象得出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)首先求出OA的长度,结合题意CB∥OA且CB=,判断出四边形OABC是平行四边形,再证明OA=OC
解:(1)设反比例函数的解析式为(k>0)
∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。∴A(﹣1,﹣2)。
又∵点A在上,∴,解得k=2。,
∴反比例函数的解析式为
(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1。
(3)四边形OABC是菱形。证明如下:
∵A(﹣1,﹣2),∴
由题意知:CB∥OA且CB=,∴CB=OA。
∴四边形OABC是平行四边形。
∵C(2,n)在上,∴。∴C(2,1)。
。∴OC=OA。
∴平行四边形OABC是菱形。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网