题目内容

阅读下面的情景对话,然后解答问题:
精英家教网
(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆
ADB
的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.
①求证:△ACE是奇异三角形;
②当△ACE是直角三角形时,求∠AOC的度数.
精英家教网
分析:(1)根据“奇异三角形”的定义与等边三角形的性质,求证即可;
(2)根据勾股定理与奇异三角形的性质,可得a2+b2=c2与a2+c2=2b2,用a表示出b与c,即可求得答案;
(3)①AB是⊙O的直径,即可求得∠ACB=∠ADB=90°,然后利用勾股定理与圆的性质即可证得;
②利用(2)中的结论,分别从AC:AE:CE=1:
2
3
与AC:AE:CE=
3
2
:1去分析,即可求得结果.
解答:精英家教网解:(1)设等边三角形的一边为a,则a2+a2=2a2
∴符合奇异三角形”的定义.
∴是真命题;

(2)∵∠C=90°,
则a2+b2=c2①,
∵Rt△ABC是奇异三角形,且b>a,
∴a2+c2=2b2②,
由①②得:b=
2
a,c=
3
a,
∴a:b:c=1:
2
3


(3)∵①AB是⊙O的直径,
∴∠ACB=∠ADB=90°,
在Rt△ACB中,AC2+BC2=AB2
在Rt△ADB中,AD2+BD2=AB2
∵点D是半圆
ADB
的中点,
AD
=
BD

∴AD=BD,
∴AB2=AD2+BD2=2AD2
∴AC2+CB2=2AD2
又∵CB=CE,AE=AD,
∴AC2+CE2=2AE2
∴△ACE是奇异三角形;

②由①可得△ACE是奇异三角形,
∴AC2+CE2=2AE2
当△ACE是直角三角形时,
由(2)得:AC:AE:CE=1:
2
3
或AC:AE:CE=
3
2
:1,
当AC:AE:CE=1:
2
3
时,AC:CE=1:
3
,即AC:CB=1:
3

∵∠ACB=90°,
∴∠ABC=30°,
∴∠AOC=2∠ABC=60°;
当AC:AE:CE=
3
2
:1时,AC:CE=
3
:1,即AC:CB=
3
:1,
∵∠ACB=90°,
∴∠ABC=60°,
∴∠AOC=2∠ABC=120°.
∴∠AOC的度数为60°或120°.
点评:此题考查了新定义的知识,勾股定理以及圆的性质,三角函数等知识.解题的关键是理解题意,抓住数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网