题目内容
【题目】如图,△ABC内接于⊙O,AB=AC,∠BAC<60°,AD为的直径,BE⊥AC交AD于P,BE的延长线交⊙O于点F,连结AF,CF,AD交BC于G,在不添加其他辅助线的情况下,图中除AB=AC外,相等的线段共有( )对.
A.2B.3C.4D.5
【答案】C
【解析】
根据垂径定理得到BG=CG,连接CP,根据等腰三角形的性质得到PB=PC,根据余角的性质得到∠PAE=∠GBP,推出∠APE=∠AFE,得到AP=AF,根据等腰三角形的性质即可得到结论.
解:∵AB=AC,
∴,
∵AD经过圆心O,
∴AD⊥BC,
∴BG=CG,
如图,连接CP,
∵AB=AC,AD⊥BC,
∴PB=PC,
∵BF⊥AC,
∴∠AEP=∠BGP=90°,
∴∠PAE+∠APE=90°,∠GBP+∠BPG=90°,
∵∠APE=∠BPG,
∴∠PAE=∠GBP,
∵∠EAF=∠GBP,
∴∠EAF=∠EAP,
∵∠EAP+∠APE=90°,∠EAF+∠AFE=90°,
∴∠APE=∠AFE,
∴AP=AF,
∵AC⊥FP,
∴EP=FE,
∴CP=CF=BP,
∴相等的线段共有4对,
故选:C.
练习册系列答案
相关题目