题目内容
24、已知关于x的一元二次方程x2-4x+m-1=0有两个相等的实数根,求m的值及方程的根.
分析:首先根据原方程根的情况,利用根的判别式求出m的值,即可确定原一元二次方程,进而可求出方程的根.
解答:解:由题意可知△=0,即(-4)2-4(m-1)=0,解得m=5.
当m=5时,原方程化为x2-4x+4=0.解得x1=x2=2.
所以原方程的根为x1=x2=2.
当m=5时,原方程化为x2-4x+4=0.解得x1=x2=2.
所以原方程的根为x1=x2=2.
点评:总结:一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
练习册系列答案
相关题目
已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2,
+
=1,则k的值是( )
1 |
x1 |
1 |
x2 |
A、8 | B、-7 | C、6 | D、5 |