题目内容

(2011湖南衡阳,27,10分)已知抛物线
(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点;
(2)如图,当该抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于AB两点,并与它的对称轴交于点D.
①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;
②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得CDMN为顶点的四边形是平行四边形.

【解】(1)====,∵不管m为何实数,总有≥0,∴=>0,∴无论m为何实数,该抛物线与x轴总有两个不同的交点.
(2)∵抛物线的对称轴为直线x=3,∴
抛物线的解析式为=,顶点C坐标为(3,-2),
解方程组,解得,所以A的坐标为(1,0)、B的坐标为(7,6),∵y=x-1=3-1=2,∴D的坐标为(3,2),设抛物线的对称轴与轴的交点为E,则E的坐标为(3,0),所以AE=BE=3,DE=CE=2,
①      假设抛物线上存在一点P使得四边形ACPD是正方形,则APCD互相垂直平分且相等,于是P与点B重合,但AP=6,CD=4,APCD,故抛物线上不存在一点P使得四边形ACPD是正方形.

② (Ⅰ)设直线CD向右平移个单位(>0)可使得CDMN为顶点的四边形是平行四边形,则直线CD的解析式为x=3,直线CD与直线y=x-1交于点M(3,2),又∵D的坐标为(3,2),C坐标为(3,-2),∴D通过向下平移4个单位得到C
CDMN为顶点的四边形是平行四边形,∴四边形CDMN是平行四边形或四边形CDNM是平行四边形.
(ⅰ)当四边形CDMN是平行四边形,∴M向下平移4个单位得N
N坐标为(3),
N在抛物线上,∴
解得(不合题意,舍去),
(ⅱ)当四边形CDNM是平行四边形,∴M向上平移4个单位得N
N坐标为(3),
N在抛物线上,∴
解得(不合题意,舍去),
(Ⅱ) 设直线CD向左平移个单位(>0)可使得CDMN为顶点的四边形是平行四边形,则直线CD的解析式为x=3,直线CD与直线y=x-1交于点M(3,2),又∵D的坐标为(3,2),C坐标为(3,-2),∴D通过向下平移4个单位得到C
CDMN为顶点的四边形是平行四边形,∴四边形CDMN是平行四边形或四边形CDNM是平行四边形.
(ⅰ)当四边形CDMN是平行四边形,∴M向下平移4个单位得N
N坐标为(3),
N在抛物线上,∴
解得(不合题意,舍去),(不合题意,舍去),
(ⅱ)当四边形CDNM是平行四边形,∴M向上平移4个单位得N
N坐标为(3),
N在抛物线上,∴
解得(不合题意,舍去),
综上所述,直线CD向右平移2或()个单位或向左平移()个单位,可使得CDMN为顶点的四边形是平行四边形.

解析

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网