题目内容
(2011湖南衡阳,26,10分)如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连结PD,过点P作PQ⊥PD,交直线BC于点Q.
(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;
(2)连结AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)
(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.
【解】(1) 假设当m=10时,存在点P使得点Q与点C重合(如下图),
∵PQ⊥PD∴∠DPC=90°,∴∠APD+∠BPC=90°,
又∠ADP+∠APD=90°,∴∠BPC=∠ADP,
又∠B=∠A=90°,∴△PBC∽△DAP,∴,
∴,∴或8,∴存在点P使得点Q与点C重合,出此时AP的长2 或8.
(2)如下图,∵PQ∥AC,∴∠BPQ=∠BAC,∵∠BPQ=∠ADP,∴∠BAC=∠ADP,又∠B=∠DAP=90°,∴△ABC∽△DAP,∴,即,∴.
∵PQ∥AC,∴∠BPQ=∠BAC,∵∠B=∠B,∴△PBQ∽△ABC,,即,∴.
(3)由已知PQ⊥PD,所以只有当DP=PQ时,△PQD为等腰三角形(如图),
∴∠BPQ=∠ADP,又∠B=∠A=90°,∴△PBQ≌△DAP,
∴PB=DA=4,AP=BQ=,
∴以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式为:S四边形PQCD= S矩形ABCD-S△DAP-S△QBP=
==16(4<≤8).
解析
练习册系列答案
相关题目