题目内容

【题目】如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 ,则另一直角边AE的长为

【答案】10
【解析】解:过点O作OM⊥AE于点M,作ON⊥DE,交ED的延长线于点N,

∵∠AED=90°,

∴四边形EMON是矩形,

∵正方形ABCD的对角线交于点O,

∴∠AOD=90°,OA=OD,

∴∠AOD+∠AED=180°,

∴点A,O,D,E共圆,

=

∴∠AEO=∠DEO= ∠AED=45°,

∴OM=ON,

∴四边形EMON是正方形,

∴EM=EN=ON,

∴△OEN是等腰直角三角形,

∵OE=8

∴EN=8,

∴EM=EN=8,

在Rt△AOM和Rt△DON中,

∴Rt△AOM≌Rt△DON(HL),

∴AM=DN=EN﹣ED=8﹣6=2,

∴AE=AM+EM=2+8=10.

所以答案是:10.

【考点精析】本题主要考查了勾股定理的概念和圆周角定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网