题目内容
【题目】如图,在平面直角坐标系中,P是第一象限角平分线上的一点,且P点的横坐标为3.把一块三角板的直角顶点固定在点P处,将此三角板绕点P旋转,在旋转的过程中设一直角边与x轴交于点E,另一直角边与y轴交于点F,若△POE为等腰三角形,则点F的坐标为_____.
【答案】(0,0)或(0,3)或(0,6﹣3)或(0,6+3).
【解析】
根据题意,结合图形,分情况讨论:
①PE=OE;
②OP=PE;
③OP=OE.
解:△POE是等腰三角形的条件是:OP、PE、EO其中两段相等,P(3,3),那么有:
①当PE=OE时,PE⊥OC,
则PF⊥y轴,则F的坐标是(0,3);
②当OP=PE时,∠OPE=90°,则F点就是(0,0);
③当OP=OE时,则OF=6±3
F的坐标是:(0,6-3)或(0,6+3).
练习册系列答案
相关题目
【题目】2018年10月17日是我国第五个“扶贫日”,某校学生会干部对学生倡导的“扶贫”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图,(图中信息不完整),已知A.B两组捐款人数的比为1:5.
被调查的捐款人数分组统计表:
组别 | 捐款额x/元 | 人数 |
A | 1≤x<10 | a |
B | 10≤x<20 | 100 |
C | 20≤x<30 | ______ |
D | 30≤x<40 | ______ |
E | 40≤x | ______ |
请结合以上信息解答下列问题:
(1)求a的值和参与调查的总人数;
(2)补全“被调查的捐款人数分组统计图1”并计算扇形B的圆心角度数;
(3)已知该校有学生2200人,请估计捐款数不少于30元的学生人数有多少人?