题目内容
如图,AB是半圆O的直径,C、D、E三点在半圆上,H、K是直径AB上的点,若∠AHC=∠DHB,∠DKA=∠EKB,已知弧AC为30°,弧BE为70°,则∠HDK=
- A.30°
- B.40°
- C.70°
- D.80°
B
分析:如果将半圆O补全,得圆O.过点D作DF⊥AB于P,交⊙O于F,连接HF、FK.首先由垂径定理,可得DP=FP,则AB是DF的垂直平分线,由线段的垂直平分线的性质得出HD=HF,KD=KF,再由等腰三角形的性质可得∠HDF=∠HFD,∠KDF=∠KFD.然后根据平角的定义证明C、H、F三点共线,E、K、F三点共线.从而∠HDK=∠CFE,最后由圆周角定理求出∠HDK的度数.
解答:解:将半圆O补全,得圆O.过点D作DF⊥AB于P,交⊙O于F,连接HF、FK.
∵DF⊥AB于P,AB是圆O的直径,
∴DP=FP,
∴AB是DF的垂直平分线,
∴HD=HF,KD=KF,
∴∠HDF=∠HFD,∠KDF=∠KFD.
∵HD=HF,DP=FP,
∴∠FHB=∠DHB,
∵∠AHC=∠DHB,
∴∠FHB=∠AHC,
∴∠AHC+∠AHF=∠FHB+∠AHF=180°,
∴C、H、F三点共线.
同理,E、K、F三点共线.
∴∠HDK=∠HDF+∠KDF=∠HFD+∠KFD=∠CFE,
又∵弧AC为30°,弧BE为70°,
∴弧CE为180°-30°-70°=80°,
∴∠CFE=×80°=40°,
∴∠HDK=40°.
故选B.
点评:本题主要考查了垂径定理,线段垂直平分线、等腰三角形的性质,圆周角定理及三点共线的证明方法.综合性强,有一定难度.
分析:如果将半圆O补全,得圆O.过点D作DF⊥AB于P,交⊙O于F,连接HF、FK.首先由垂径定理,可得DP=FP,则AB是DF的垂直平分线,由线段的垂直平分线的性质得出HD=HF,KD=KF,再由等腰三角形的性质可得∠HDF=∠HFD,∠KDF=∠KFD.然后根据平角的定义证明C、H、F三点共线,E、K、F三点共线.从而∠HDK=∠CFE,最后由圆周角定理求出∠HDK的度数.
解答:解:将半圆O补全,得圆O.过点D作DF⊥AB于P,交⊙O于F,连接HF、FK.
∵DF⊥AB于P,AB是圆O的直径,
∴DP=FP,
∴AB是DF的垂直平分线,
∴HD=HF,KD=KF,
∴∠HDF=∠HFD,∠KDF=∠KFD.
∵HD=HF,DP=FP,
∴∠FHB=∠DHB,
∵∠AHC=∠DHB,
∴∠FHB=∠AHC,
∴∠AHC+∠AHF=∠FHB+∠AHF=180°,
∴C、H、F三点共线.
同理,E、K、F三点共线.
∴∠HDK=∠HDF+∠KDF=∠HFD+∠KFD=∠CFE,
又∵弧AC为30°,弧BE为70°,
∴弧CE为180°-30°-70°=80°,
∴∠CFE=×80°=40°,
∴∠HDK=40°.
故选B.
点评:本题主要考查了垂径定理,线段垂直平分线、等腰三角形的性质,圆周角定理及三点共线的证明方法.综合性强,有一定难度.
练习册系列答案
相关题目