题目内容
【题目】在平面直角坐标系中,直线与轴交于点,与轴交于点,抛物线经过点、.
(1)求、满足的关系式及的值.
(2)当时,若的函数值随的增大而增大,求的取值范围.
(3)如图,当时,在抛物线上是否存在点,使的面积为1?若存在,请求出符合条件的所有点的坐标;若不存在,请说明理由.
【答案】(1);;(2);(3)存在,点或或.
【解析】
(1)求出点、的坐标,即可求解;
(2)当时,若的函数值随的增大而增大,则函数对称轴,而,即:,即可求解;
(3)过点作直线,作轴交于点,作于点,,则,即可求解.
(1),令,则,令,则,
故点、的坐标分别为、,则,
则函数表达式为:,
将点坐标代入上式并整理得:;
(2)当时,若的函数值随的增大而增大,
则函数对称轴,而,
即:,解得:,
故:的取值范围为:;
(3)当时,二次函数表达式为:,
过点作直线,作轴交于点,作于点,
∵,∴,
,
则,
在直线下方作直线,使直线和与直线等距离,
则直线与抛物线两个交点坐标,分别与点组成的三角形的面积也为1,
故:,
设点,则点,
即:,
解得:或,
故点或 或.
练习册系列答案
相关题目
【题目】某校为了解学生的每周平均课外阅读时间,在本校随机抽取若干名学生进行调查,并将调查结果绘制成如下不完整的统计图表,请根据图表中所给的信息解答下列问题:
组别 | 阅读时间(单位:小时) | 频数(人数) |
8 | ||
20 | ||
24 | ||
4 |
(1)图表中的______,______;
(2)扇形统计图中组所对应的圆心角为______度;
(3)该校共有学生1500名,请估计该校有多少名学生的每周平均课外阅读时间不低于3小时?