题目内容
已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后得到直线l,与反比例函数的图象交于点B(6,m),求m的值和直线l的解析式;
(3)在(2)中的直线l与x轴、y轴分别交于C、D,求四边形OABC的面积.
解:(1)设正比例函数的解析式为y=ax,反比例函数的解析式为y=,
∵正比例函数和反比例函数的图象都经过点A(3,3),
∴3=3a,3=,
∴a=1,b=9,
∴正比例函数的解析式为y=x,反比例函数的解析式为y=;
(2)∵点B在反比例函数上,
∴m==,
∴B点的坐标为(6,),
∵直线BD是直线OA平移后所得的直线,
∴可设直线BD的解析式为y=x+c,
∴=6+c,
∴c=-,
∴直线l的解析式为y=x-;
(3)过点A作AE∥x轴,交直线l于点E,连接AC.
∵直线l的解析式为y=x-,A(3,3),
∴点E的坐标为(,3),点C的坐标为(,0).
∴AE=-3=,OC=,
∴S四边形OABC=S△OAC+S△ACE-S△ABE
=××3+××3-=××
=.
分析:(1)利用待定系数法,由正比例函数和反比例函数的图象都经过点A(3,3),即可求得解析式;
(2)由点B在反比例函数图象上,即可求得m的值;又由此一次函数是正比例函数平移得到的,可知一次函数与反比例函数的比例系数相同,代入点B的坐标即可求得解析式;
(3)构造直角梯形AEFD,则通过求解△ABE、△BDF与直角梯形ADFE的面积即可求得△ABD的面积.
点评:此题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,直线平移规律,四边形面积的求解方法等知识.主要考查学生数形结合的思想方法.
∵正比例函数和反比例函数的图象都经过点A(3,3),
∴3=3a,3=,
∴a=1,b=9,
∴正比例函数的解析式为y=x,反比例函数的解析式为y=;
(2)∵点B在反比例函数上,
∴m==,
∴B点的坐标为(6,),
∵直线BD是直线OA平移后所得的直线,
∴可设直线BD的解析式为y=x+c,
∴=6+c,
∴c=-,
∴直线l的解析式为y=x-;
(3)过点A作AE∥x轴,交直线l于点E,连接AC.
∵直线l的解析式为y=x-,A(3,3),
∴点E的坐标为(,3),点C的坐标为(,0).
∴AE=-3=,OC=,
∴S四边形OABC=S△OAC+S△ACE-S△ABE
=××3+××3-=××
=.
分析:(1)利用待定系数法,由正比例函数和反比例函数的图象都经过点A(3,3),即可求得解析式;
(2)由点B在反比例函数图象上,即可求得m的值;又由此一次函数是正比例函数平移得到的,可知一次函数与反比例函数的比例系数相同,代入点B的坐标即可求得解析式;
(3)构造直角梯形AEFD,则通过求解△ABE、△BDF与直角梯形ADFE的面积即可求得△ABD的面积.
点评:此题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,直线平移规律,四边形面积的求解方法等知识.主要考查学生数形结合的思想方法.
练习册系列答案
相关题目