题目内容
【题目】如图,AB是半圆O的直径,点C在半圆O上,AB=5cm,AC=4cm.D是弧BC上的一个动点(含端点B,不含端点C),连接AD,过点C作CE⊥AD于E,连接BE,在点D移动的过程中,BE的取值范围是 .
【答案】 ﹣2≤BE<3
【解析】解:如图,
由题意知,∠AEC=90°,
∴E在以AC为直径的⊙M的 上(不含点C、可含点N),
∴BE最短时,即为连接BM与⊙M的交点(图中点E′点),
∵AB=5,AC=4,
∴BC=3,
作MF⊥AB于F,
∴∠AFM=∠ACB=90°,∠FAM=∠CAB,
∴△AMF∽△ABC,
∴ ,即 ,得MF= ,
∴AF= = ,
则BF=AB﹣AF= ,
∴BM= = ,
∴BE长度的最小值BE′=BM﹣ME′= ﹣2,
BE最长时,即E与C重合,
∵BC=3,且点E与点C不重合,
∴BE<3,
综上, ﹣2≤BE<3,
故答案为: ﹣2≤BE<3.
由∠AEC=90°知E在以AC为直径的⊙M的 上(不含点C、可含点N),从而得BE最短时,即为连接BM与⊙M的交点(图中点E′点),作MF⊥AB于F,证△AMF∽△ABC得 ,即可知MF= 、AF= = 、BF= 、BM= ,从而得BE长度的最小值BE′=BM﹣ME′= ﹣2;由BE最长时即E与C重合,根据BC=3且点E与点C不重合,得BE<3,从而得出答案.
【题目】旭日商场销售A,B两种品牌的钢琴,这两种钢琴的进价和售价如下表所示:
A | B | |
进价(万元/.套) | 1.5 | 1.2 |
售价(万元/套) | 1.65 | 1.4 |
该商场计划购进两种钢琴若干套,共需66万元,全部销售后可获毛利润9万元.(毛利润=(售价﹣进价)×销售量)
(1)该商场计划购进A,B两种品牌的钢琴各多少套?
(2)通过市场调查,该商场决定在原计划的基础上,减少A种钢琴的购进数量,增加B种钢琴的购进数量,已知B种钢琴增加的数量是A种钢琴减少数量的1.5倍,若用于购进这两种钢琴的总资金不超过69万元,问A种钢琴购进数量至多或减少多少套?
【题目】学习委员统计全班50位同学对语文、数学、英语、体育、音乐五个科目最喜欢情况,所得数据用表格与条形图描述如下:
科目 | 语文 | 数学 | 英语 | 体育 | 音乐 |
人数 | 10 | a | 15 | 3 | 2 |
(1)表格中a的值为;
(2)补全条形图;
(3)小李是最喜欢体育之一,小张是最喜欢音乐之一,计划从最喜欢体育、音乐的人中,每科目各选1人参加学校训练,用列表或树形图表示所有结果,并求小李、小张至少有1人被选上的概率是多少?