题目内容
【题目】等腰三角形一腰长为5,一边上的高为3,则底边长为 .
【答案】8或10或3
【解析】如图所示:
当等腰三角形为锐角三角形,且CD为腰上的高时,
在Rt△ACD中,AC=5,CD=3,
根据勾股定理得:AD==4;
∴BD=AB-AD=5-4=1,
在Rt△BDC中,CD=3,BD=1,
根据勾股定理得:BC==;
当等腰三角形为钝角三角形,且CD为腰上的高时,
在Rt△ACD中,AC=5,CD=3,
根据勾股定理得:AD==4,
∴BD=AB+AD=5+4=9,
在Rt△BDC中,CD=3,BD=9,
根据勾股定理得:BC==3;
当AD为底边上的高时,如图所示:
∵AB=AC,AD⊥BC,
∴BD=CD,
在Rt△ABD中,AD=3,AB=5,
根据勾股定理得:BD==4,
∴BC=2BD=8,综上,等腰三角形的底边长为8或或3.
练习册系列答案
相关题目