题目内容
【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数的图象经过点D,与BC的交点为N.
(1)求反比例函数和一次函数的表达式;
(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.
【答案】(1),y=﹣x﹣1;(2)P为(﹣10,9)或(8,﹣9).
【解析】
试题分析:(1)由正方形OABC的顶点C坐标,确定出边长,及四个角为直角,根据AD=2DB,求出AD的长,确定出D坐标,代入反比例解析式求出m的值,再由AM=2MO,确定出MO的长,即M坐标,将M与D坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;
(2)把y=3代入反比例解析式求出x的值,确定出N坐标,得到NC的长,设P(x,y),根据△OPM的面积与四边形OMNC的面积相等,求出y的值,进而得到x的值,确定出P坐标即可.
试题解析:(1)∵正方形OABC的顶点C(0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵AD=2DB,∴AD=AB=2,∴D(﹣3,2),把D坐标代入得:m=﹣6,∴反比例解析式为,∵AM=2MO,∴MO=OA=1,即M(﹣1,0),把M与D坐标代入y=kx+b中得:,解得:k=b=﹣1,则直线DM解析式为y=﹣x﹣1;
(2)把y=3代入得:x=﹣2,∴N(﹣2,3),即NC=2,设P(x,y),∵△OPM的面积与四边形OMNC的面积相等,∴(OM+NC)OC=OM|y|,即|y|=9,解得:y=±9,当y=9时,x=﹣10,当y=﹣9时,x=8,则P坐标为(﹣10,9)或(8,﹣9).
【题目】王老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组部分统计数据.
摸球的次数 | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到黑球的次数 | 23 | 31 | 60 | 127 | 203 | 251 |
摸到黑球的频率 | 0.23 | 0.21 | 0.30 | 0.254 | 0.253 |
(1)根据上表数据计算 = . 估计从袋中摸出一个球是黑球的概率是 . (精确到0. 01)
(2)估算袋中白球的个数.