题目内容

如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为(  )
A.(,﹣
B.(﹣
C.(2,﹣2)
D.(,﹣
A
首先连接OB,OB′,过点B′作B′E⊥x轴于E,由旋转的性质,易得∠BOB′=105°,由菱形的性质,易证得△AOB是等边三角形,即可得OB′=OB=OA=2,∠AOB=60°,继而可求得∠AOB′=45°,由等腰直角三角形的性质,即可求得答案.
解:连接OB,OB′,过点B′作B′E⊥x轴于E,

根据题意得:∠BOB′=105°,
∵四边形OABC是菱形,
∴OA=AB,∠AOB=∠AOC=∠ABC=×120°=60°,
∴△OAB是等边三角形,
∴OB=OA=2,
∴∠AOB′=∠BOB′﹣∠AOB=105°﹣60°=45°,OB′=OB=2,
∴OE=B′E=OB′•sin45°=2×=
∴点B′的坐标为:(,﹣).
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网