题目内容
【题目】轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.
(1)若AB∥x轴,求t的值;
(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.
【答案】
(1)解:过点B作BC⊥x轴于点C,如图所示.
∵AO⊥x轴,BC⊥x轴,且AB∥x轴,
∴四边形ABCO为长方形,
∴AO=BC=4.
∵△APB为等腰直角三角形,
∴AP=BP,∠PAB=∠PBA=45°,
∴∠OAP=90°﹣∠PAB=45°,
∴△AOP为等腰直角三角形,
∴OA=OP=4.
∴t=4÷1=4(秒),
故t的值为4
(2)解:当t=3时,M、P、B为顶点的三角形和△ABP全等,可得:
点M的坐标为(4,7),(6,﹣4),(10,﹣1),(0,4)
【解析】(1)由AB∥x轴,可找出四边形ABCO为长方形,再根据△APB为等腰三角形可得知∠OAP=45°,从而得出△AOP为等腰直角三角形,由此得出结论;(2)由全等三角形的性质和等腰三角形的性质可得出结论,注意分类讨论.
【考点精析】解答此题的关键在于理解等腰直角三角形的相关知识,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.
练习册系列答案
相关题目