题目内容
【题目】如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1 , 以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1 , …,按此规律继续下去,则矩形ABnCnCn﹣1的面积为 .
【答案】
【解析】解:
∵四边形ABCD是矩形,
∴AD⊥DC,
∴AC===,
∵按逆时针方向作矩形ABCD的相似矩形AB1C1C,
∴矩形AB1C1C的边长和矩形ABCD的边长的比为:2
∴矩形AB1C1C的面积和矩形ABCD的面积的比5:4,
∵矩形ABCD的面积=2×1=2,
∴矩形AB1C1C的面积=,
依此类推,矩形AB2C2C1的面积和矩形AB1C1C的面积的比5:4
∴矩形AB2C2C1的面积=
∴矩形AB3C3C2的面积=,
按此规律第n个矩形的面积为:
所以答案是:.
练习册系列答案
相关题目