题目内容

【题目】若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.
(1)请写出两个为“同簇二次函数”的函数;
(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.

【答案】
(1)解:设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,

当a=2,h=3,k=4时,

二次函数的关系式为y=2(x﹣3)2+4.

∵2>0,

∴该二次函数图象的开口向上.

当a=3,h=3,k=4时,

二次函数的关系式为y=3(x﹣3)2+4.

∵3>0,

∴该二次函数图象的开口向上.

∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,

∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.

∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4


(2)解:∵y1的图象经过点A(1,1),

∴2×12﹣4×m×1+2m2+1=1.

整理得:m2﹣2m+1=0.

解得:m1=m2=1.

∴y1=2x2﹣4x+3

=2(x﹣1)2+1.

∴y1+y2=2x2﹣4x+3+ax2+bx+5

=(a+2)x2+(b﹣4)x+8

∵y1+y2与y1为“同簇二次函数”,

∴y1+y2=(a+2)(x﹣1)2+1

=(a+2)x2﹣2(a+2)x+(a+2)+1.

其中a+2>0,即a>﹣2.

解得:

∴函数y2的表达式为:y2=5x2﹣10x+5.

∴y2=5x2﹣10x+5

=5(x﹣1)2

∴函数y2的图象的对称轴为x=1.

∵5>0,

∴函数y2的图象开口向上.

①当0≤x≤1时,∵函数y2的图象开口向上,

∴y2随x的增大而减小,

∴当x=0时,y2取最大值,最大值为5×(0﹣1)2=5,

②当1≤x≤3时,∵函数y2的图象开口向上,

∴y2随x的增大而增大,

∴当x=3时,y2取最大值,

最大值为5(3﹣1)2=20.

综上所述:当0≤x≤3时,y2的最大值为20


【解析】(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.
【考点精析】通过灵活运用二次函数的性质和二次函数的最值,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网