题目内容
【题目】如图,在△ABC中,∠ABC=90°,过点B作BD⊥AC于点D,BE平分∠ABD交AC于点E.
(1)求证:CB=CE;
(2)若∠CEB=80°,求∠DBC的大小.
【答案】(1)证明见详解,(2)∠DBC =70°.
【解析】
(1)由BD⊥AC结合∠ABC=90°可证明∠A+∠C=90°,∠DBC+∠C=90°,由BE平分∠ABD得∠ABE=∠DBE,由∠CBE=∠CBD+∠DBE,∠CEB=∠A+∠ABE证得∠CBE=∠CEB即可.
(2)利用等腰三角形的性质求出∠C即可解决问题.
(1)证明:∵BD⊥AC,
∴∠CDB=90°,
∵∠ABC=90°,
∴∠A+∠C=90°,∠DBC+∠C=90°,
∵BE平分∠ABD,
∴∠ABE=∠DBE,
∵∠CBE=∠CBD+∠DBE,∠CEB=∠A+∠ABE,
∴∠CBE=∠CEB,
∴CB=CE.
(2)∵∠CEB=∠CBE=80°,
∴∠C=180°-2×80°=20°,
∵∠CDB=90°,
∴∠DBC=90°-20°=70°.
【题目】小华有一个容量为8GB (1GB= 1024MB)的U盘,U盘中已经存储了一个视频文件,其余空间都用来存储照片,若每张照片占用的内存容量均相同,图片数量x (张)和剩余可用空间y (MB)的部分关系如表:
图片数量 | 100 | 150 | 200 | 400 | 800 |
剩余可用空间 | 5700 | 5550 | 5400 | 4800 | 3600 |
(1)由上表可知,y与x之间满足___ ___(填“一次”或“二次”或“反比例”)函数的关系,求出y与x之间的关系式.
(2)求出U盘中视频文件的占用内存容量.
【题目】2018年5月12日是我国第十个全国防灾减灾日,也是汶川地震十周年.为了弘扬防灾减灾文化,普及防灾减灾知识和技能,郑州W中学通过学校安全教育平台号召全校学生进行学习,并对学生学习成果进行了随机抽取,现对部分学生成绩(x为整数,满分100分)进行统计.绘制了如图尚不完整的统计图表:
调查结果统计表
组别 | 分数段 | 频数 |
A | 50≤x<60 | a |
B | 60≤x<70 | 80 |
C | 70≤x<80 | 100 |
D | 80≤x<90 | 150 |
E | 90≤x<100 | 120 |
合计 | b |
根据以上信息解答下列问题:
(1)填空:a= ,b= ;
(2)扇形统计图中,m的值为 ,“D”所对应的圆心角的度数是 度;
(3)本次调查测试成绩的中位数落在 组内;
(4)若参加学习的同学共有2000人,请你估计成绩在90分及以上的同学大约有多少人?