题目内容
【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论: ①DG=DF; ②四边形EFDG是菱形; ③;
④当时,BE的长为,其中正确的结论个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】试题解析:∵GE∥DF,
∴∠EGF=∠DFG.
∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG.
∴GD=DF.故①正确;
∴DG=GE=DF=EF.
∴四边形EFDG为菱形.故②正确;
如图1所示:连接DE,交AF于点O.
∵四边形EFDG为菱形,
∴GF⊥DE,OG=OF=GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA,
∴△DOF∽△ADF.
∴,即DF2=FOAF.
∵FO=GF,DF=EG,
∴EG2=GFAF.故③正确;
如图2所示:过点G作GH⊥DC,垂足为H.
∵EG2=GFAF,AG=6,EG=2,
∴20=FG(FG+6),整理得:FG2+6FG-40=0.
解得:FG=4,FG=-10(舍去).
∵DF=GE=2,AF=10,
∴AD=.
∵GH⊥DC,AD⊥DC,
∴GH∥AD.
∴△FGH∽△FAD.
∴,即.
∴GH=.
∴BE=AD-GH=4-=,故④正确.
故选D.
练习册系列答案
相关题目