题目内容

【题目】如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
(1)求证:Rt△ADE与Rt△BEC全等;
(2)求证:△CDE是直角三角形.

【答案】
(1)解:全等.理由是:

∵∠1=∠2,

∴DE=CE,

∵∠A=∠B=90°,AE=BC,

在Rt△ADE和Rt△BEC中,

∴Rt△ADE≌Rt△BEC(HL).


(2)解:是直角三角形.理由是:

∵Rt△ADE≌Rt△BEC,

∴∠AED=∠BCE,

∵∠ECB+∠BEC=90°,

∴∠AED+∠BEC=90°.

∴∠DEC=90°,

∴△CDE是直角三角形.


【解析】(1)估计等边对等角,推出DE=EC,再根据HL即可证明Rt△ADE≌Rt△BEC;(2)由Rt△ADE≌Rt△BEC,推出∠AED=∠BCE,由∠ECB+∠BEC=90°,推出∠AED+∠BEC=90°.即∠DEC=90°;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网