题目内容
【题目】如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.
(1)AM= ,AP= .(用含t的代数式表示)
(2)当四边形ANCP为平行四边形时,求t的值
(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,
①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由
②使四边形AQMK为正方形,则AC= .
【答案】(1)8﹣2t;2+t;(2)2;(3)①存在时刻t=1,使四边形AQMK为菱形.理由详见解析;②8.
【解析】试题分析:(1)由DM=2t,根据AM=AD-DM即可求出AM=6-2t;先证明四边形CNPD为矩形,得出DP=CN=4-t,则AP=AD-DP=2+t;
(2)根据四边形ANCP为平行四边形时,可得4-t=6-(6=4-t),解方程即可;
(3))①由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程4-t-2t=6-(4-t),求解即可,
②要使四边形AQMK为正方形,由∠ADC=90°,可得∠CAD=45°,所以四边形AQMK为正方形,则CD=AD,由AD=8,可得CD=6,利用勾股定理求得AC即可.
试题解析:(1)6﹣2t,2+t.
(2)∵四边形ANCP为平行四边形时,CN=AP,
∴4﹣t=t+2,解得t=1,
(3)①∵NP⊥AD,QP=PK,
∴当PM=PA时有四边形AQMK为菱形,
∴4﹣t﹣2t=2+t,解得t=0.5,
∴存在时刻t=0.5,使四边形AQMK为菱形.
②AC=6.