题目内容
【题目】如图,△ABC中, ∠BAC=∠ADB,BE平分∠ABC交AD于点E,H为BC上一点,且BH=BA交AC于点F,连接FH.
⑴求证:AE=FH;
⑵作EG//BC交AC于点G若AG=5,AC=8,求FG的长.
【答案】(1)详见解析;(2)FG=2
【解析】试题分析:(1)由角平分线的定义和已知条件证出∠AFB=∠AEF,即可得AE=AF,再利用SAS证明△ABF≌△HBF,得出AF=FH,即可得结论;(2)证明△AEG≌△FHC,得出AG=FC=5,即可得出结果.
试题解析:
(1)∵BF平分∠ABC,
∴∠ABF=∠CBF;
∵∠AFB=180°-∠ABF-∠BAF,∠BED=180°-∠CBF-∠ADB,
又∵∠BAC=∠ADB,
∴∠AFB=∠BED ;
∵∠AEF=∠BED,
∴∠AFB=∠AEF,
∴AE=AF;
在△ABF和△FBH中,
,
∴△ABF≌△FBH,
∴AF=FH,
∴AE=FH.
(2)∵△ABF≌△HBF,
∴∠AFB=∠HFB,
∵∠AFB=∠AEF,
∴∠HFB=∠AEF,
∴AE∥FH,
∴∠GAE=∠CFH,
∵EG∥BC,
∴∠AGE=∠C,
在△AEG和△FHC中,
∵,
∴△AEG≌△FHC(AAS);
∴AG=FC=5,
∴FG=5+5 -8=2.
练习册系列答案
相关题目