题目内容
如图,将矩形沿对角线剪开,再把沿方向平移得到.
(1)证明;
(2)若,试问当点在线段上的什么位置时,四边形是菱形,并请说明理由.
解:(1)证明:∵四边形ABCD是矩形,
△A′C′D′由△ACD平移得到,
∴A′D′=AD=CB,AA′=CC′,A′D′∥AD∥BC.
∴∠D′A′C′=∠BCA.
∴△A′AD′≌△CC′B.
(2)当点C′是线段AC的中点时,四边形ABC′D′是菱形.
理由如下:
∵四边形ABCD是矩形,△A′C′D′由△ACD平移得到,
∴C′D′=CD=AB.
由(1)知AD′=C′B.
∴四边形ABC′D′是平行四边形.
在Rt△ABC中,点C′是线段AC的中点,
∴BC′= AC.
而∠ACB=30°,
∴AB= AC.
∴AB=BC′.
∴四边形ABC′D′是菱形.
练习册系列答案
相关题目