题目内容
【题目】如图,在四边形ABCD中,∠B=∠C,点E,F分别在边AB,BC上,AE=DF=DC.
(1)若∠DFC=70°,则∠C的大小=(度),∠B的大小=(度);
(2)求证:四边形AEFD是平行四边形;
(3)若∠FDC=2∠EFB,则四边形AEFD一定是“菱形、矩形、正方形”中的 .
【答案】
(1)70,70
(2)证明:由(1),可得:∠DFC=∠B,
∴AE∥DF,
∵AE=DF,
∴四边形AEFD是平行四边形.
(3)矩形
【解析】解:(1)∵DF=DC,
∴∠C=∠DFC=70°,
∵∠B=∠C,
∴∠B=70°.
⑶∵2∠DFC+∠FDC=180°,∠FDC=2∠EFB,
∴2∠DFC+2∠EFB=180°,
∴∠DFC+∠EFB=90°,
∴∠DFE=180°﹣90°=90°,
∵四边形AEFD是平行四边形,
∴四边形AEFD一定是“菱形、矩形、正方形”中的矩形.
所以答案是:70、70、矩形.
【考点精析】解答此题的关键在于理解平行四边形的判定与性质的相关知识,掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.
练习册系列答案
相关题目